1,224 research outputs found

    Momentum Strategies with L1 Filter

    Full text link
    In this article, we discuss various implementation of L1 filtering in order to detect some properties of noisy signals. This filter consists of using a L1 penalty condition in order to obtain the filtered signal composed by a set of straight trends or steps. This penalty condition, which determines the number of breaks, is implemented in a constrained least square problem and is represented by a regularization parameter ? which is estimated by a cross-validation procedure. Financial time series are usually characterized by a long-term trend (called the global trend) and some short-term trends (which are named local trends). A combination of these two time scales can form a simple model describing the process of a global trend process with some mean-reverting properties. Explicit applications to momentum strategies are also discussed in detail with appropriate uses of the trend configurations.Comment: 22 pages, 15 figures. Submitted to The Journal of Investment Strategies, reference code: JOIS140227T

    Clustering: Methodology, hybrid systems, visualization, validation and implementation

    Get PDF
    Unsupervised learning is one of the most important steps of machine learning applications. Besides its ability to obtain the insight of the data distribution, unsupervised learning is used as a preprocessing step for other machine learning algorithm. This dissertation investigates the application of unsupervised learning into various types of data for many machine learning tasks such as clustering, regression and classification. The dissertation is organized into three papers. In the first paper, unsupervised learning is applied to mixed categorical and numerical feature data type to transform the data objects from the mixed type feature domain into a new sparser numerical domain. By making use of the data fusion capacity of adaptive resonance theory clustering, the approach is able to reduce the distinction between the numerical and categorical features. The second paper presents a novel method to improve the performance of wind forecast by clustering the time series of the surrounding wind mills into the similar group by using hidden Markov model clustering and using the clustering information to enhance the forecast. A fast forecast method is also introduced by using extreme learning machine which can be trained by analytic form to choose the optimal value of past samples for prediction and appropriate size of the neural network. In the third paper, unsupervised learning is used to automatically learn the feature from the dataset itself without human design of sophisticated feature extractors. The paper points out that by using unsupervised feature learning with multi-quadric radial basis function extreme learning machine the performance of the classifier is better than several other supervised learning methods. The paper further improves the speed of training the neural network by presenting an algorithm that runs parallel on GPU --Abstract, page iv

    Two-component Bose gases with one-body and two-body couplings

    Full text link
    We study the competition between one-body and two-body couplings in weakly-interacting two-component Bose gases, in particular as regards field correlations. We derive the meanfield theory for both ground state and low-energy pair excitations in the general case where both one-body and two-body couplings are position-dependent and the fluid is subjected to a state-dependent trapping potential. General formulas for phase and density correlations are also derived. Focusing on the case of homogeneous systems, we discuss the pair-excitation spectrum and the corresponding excitation modes, and use them to calculate correlation functions, including both quantum and thermal fluctuation terms. We show that the relative phase of the two components is imposed by that of the one-body coupling, while its fluctuations are determined by the modulus of the one-body coupling and by the two-body coupling. One-body coupling and repulsive two-body coupling cooperate to suppress relative-phase fluctuations, while attractive two-body coupling tends to enhance them. Further applications of the formalism presented here and extensions of our work are also discussed.Comment: published versio

    Competing superfluid and density-wave ground-states of fermionic mixtures with mass imbalance in optical lattices

    Full text link
    We study the effect of mass imbalance on the phase diagram of a two-component fermionic mixture with attractive interactions in optical lattices. Using static and dynamical mean-field theories, we show that the pure superfluid phase is stable for all couplings when the mass imbalance is smaller than a limiting value. For larger imbalance, phase separation between a superfluid and a charge-density wave takes place when the coupling exceeds a critical strength. The harmonic trap induces a spatial segregation of the two phases, with a rapid variation of the density at the boundary.Comment: e.g.:4 pages, 3 figure

    3D Human Modeling using Virtual Multi-View Stereopsis and Object-Camera Motion Estimation

    Get PDF
    This paper presents a method for multi-view 3D modeling of human bodies using virtual stereopsis. The algorithm expands and improves the method used in [5], but unlike that method, our approach does not require multiple calibrated cameras and/or carefully-positioned turn tables. Instead, an algorithm using SIFT feature extraction is employed and an accurate motion estimation is performed to calculate the position of virtual cameras around the object. That is, by employing a single pair of cameras mounted on a same tripod, our algorithm computes the relative pose between camera and object and creates virtual cameras from the consecutive images in the video sequence. Besides not requiring any special setup, another advantage of our method is in the simplicity to obtain denser models if necessary: by only increasing the number of sampled images during the object-camera motion. As the quantitative results presented here demonstrate, our method compares to the PMVS method, while it makes it much simpler and cost-effective to implement

    Thermometry and signatures of strong correlations from Raman spectroscopy of fermionic atoms in optical lattices

    Full text link
    We propose a method to directly measure the temperature of a gas of weakly interacting fermionic atoms loaded into an optical lattice. This technique relies on Raman spectroscopy and is applicable to experimentally relevant temperature regimes. Additionally, we show that a similar spectroscopy scheme can be used to obtain information on the quasiparticle properties and Hubbard bands of the metallic and Mott-insulating states of interacting fermionic spin mixtures. These two methods provide experimentalists with novel probes to accurately characterize fermionic quantum gases confined to optical lattices.Comment: 13 pages, 22 figure

    Clustering Data of Mixed Categorical and Numerical Type with Unsupervised Feature Learning

    Get PDF
    Mixed-type categorical and numerical data are a challenge in many applications. This general area of mixed-type data is among the frontier areas, where computational intelligence approaches are often brittle compared with the capabilities of living creatures. In this paper, unsupervised feature learning (UFL) is applied to the mixed-type data to achieve a sparse representation, which makes it easier for clustering algorithms to separate the data. Unlike other UFL methods that work with homogeneous data, such as image and video data, the presented UFL works with the mixed-type data using fuzzy adaptive resonance theory (ART). UFL with fuzzy ART (UFLA) obtains a better clustering result by removing the differences in treating categorical and numeric features. The advantages of doing this are demonstrated with several real-world data sets with ground truth, including heart disease, teaching assistant evaluation, and credit approval. The approach is also demonstrated on noisy, mixed-type petroleum industry data. UFLA is compared with several alternative methods. To the best of our knowledge, this is the first time UFL has been extended to accomplish the fusion of mixed data types

    Hidden Markov Model with Information Criteria Clustering and Extreme Learning Machine Regression for Wind Forecasting

    Get PDF
    This paper proposes a procedural pipeline for wind forecasting based on clustering and regression. First, the data are clustered into groups sharing similar dynamic properties. Then, data in the same cluster are used to train the neural network that predicts wind speed. For clustering, a hidden Markov model (HMM) and the modified Bayesian information criteria (BIC) are incorporated in a new method of clustering time series data. to forecast wind, a new method for wind time series data forecasting is developed based on the extreme learning machine (ELM). the clustering results improve the accuracy of the proposed method of wind forecasting. Experiments on a real dataset collected from various locations confirm the method\u27s accuracy and capacity in the handling of a large amount of data
    • …
    corecore